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An axisymmetric problem of deformation of a space weakened by a spherical
cut with the external forces or displacements given at the edges of the cut, is
solved in quadratures. The state of stress is expressed in terms of the analytic
functions of a complex variable, The holomorphic character of these functions
is studied and the nonholomorphic terms separated. Explicit formulas for the
stresses on a surface complementing the cutto a complete sphere, are given for
the case of uniform extension at infinity. The erroneous character of a number
of solutions obtained earlier, is indicated.

1, Let an elastic space be weakened by a slit which coincides with a part of a spher-
ical surface of unit radius with its center at the coordinate origin. In the meridional
section the slit coincides with the arc AMB (see Fig. 1).

The forces p,”, p,"and p,”, p, are given
at the upper and lower edge of the slit, respect-
ively. The stresses and displacements vanish
at infinity. The displacments of the slit edges
are assumed bounded, and although the stresses
at these points may be infinite, their singuiarities
must be of order strictly less than unity.

Similar assumptions were used in solving this
problem in [1— 4) and others, but the holomor-
phic character of the functions was wrongly as-
sessed and the results obtained could therefore
only be used for a restricted choice of loads.

The stresses in a body under an axisymmetric
load are given in terms of two analytic functions
¢ and 1 of the complex variable { [5], by

t
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e=0¢(0, Y =%, X =X 0=V T =) =1 t=z+ir

where z,r and”@ are cylindrical coordinates, v is the Poisson's ratio and =3 —4v).
Using the functions F (L), F; (§), F, (L) and v () defined by the relations

=20F - F, v =0F + (1 -+ v)2LF + F) (1.2)
W o= F—4LF —2(1 + O F' — Fy, v =Y, (LF, + F, + Fy)

we can obtain [5] the following expressions for the axjal and radial forces acting upon

the unit spherical surface .

i

1

S F 22 Prza—,g Xdg, |tf=1 (1.3)
t

The functions ¢ () and \p (C) are holomorphic in the meridional cross section of the
body (which in the present case corresponds to the plane cut along the arc AMB) , and
vanish at infinity. This is easily established using the relations connecting the axisym-
metric and plane states [6], or by writing the general solution of the axisymmetric prob-
lem in terms of the generalized analytic functions, and passing from them to the analytic
functions [7]. Treating the first equation of (1. 2) as a differential equation in F (),

we obtain 5
1 ¢ d§ c
F = —
2 V3 } VETVE (.9
or
T __1_... & ’ﬂ +_£:._ 1.5
EEVMURE -9
Since both above expressions should give the same result, we have
: Co.dr
C—C = S 1.6
¢ Yt (1.6)

Consequently, only one of the constants € and €’ can be fixed arbitrarily. From now
on we shall assume that ¢’ = 0.

Expanding ¢’ (§) into series in positive (when |§ | <C 1) or negative (when| § | >
1) powers of { we can show that the integral terms in (1.4) and (1. 5) represent the
functions which are holomorphic when | § | << 1 and | § | >> 1 ,respectively. The
function F () will be holomorphic outside the unit circle and {F (§) =0 as { —
oo; the difference F ({) — C /¥ { will be holomorphic within the unit circle,

Note. Inf[l,3,4] F () was assumed to be holomorphic, i, e. it was in fact taken
for granted that ¢ = ¢’ = 0 which is possible only when the integral (1. 6) is equal zero,
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In l[)2], slightly different functions, which are not in general holomorphic, were assumed
to be so,

Thes functions F, (C), F, (§) and v ({) are also holomorphic outside the unit circle,
and lim "F,(0) =0, n=1, 2 lim& () =0, >0 (L7
The following differences are holomorphic within the unit circle:

Fo (D) —(n+1) g (D), v() —>*,C0"
(g €0) ="2/,C (T — LT*R)

The function F,({) which is nonholomorphic within the unit circle, can be eliminated
with help of the following functions:

_ 3 1 4a3
hg) = m(?—i)L(§)+W(c+1)_3a C-g;i

o =L, L= L —2ia VI—1

X L+ 2ia VE—1
Xo=X (%), T=e", a=sinJo

L) = —2ni, L (c0) =0

where 2y, is the angle subtended by the arc ANB complementing the cut to a com-
plete circumference, Then we have

Fp = Fno 4+ (n + 1) Cify + (n — 1) Cofs, C;‘»‘%C (1.3)

The functions F, ({) (n = 1, 2) are holomorphic in the plane with the cut AMB.
In all these representations the branch line of }/Z is drawn along the negative part of
the z-axis (from the point O upwards).

Solving the second equations of (1.2) for F (), we obtain

a &
e oo ) e

& § (v =375 o + Do+ Dk

oy — Og 4 Z ;Grl'l

ay % as t'
Sl R ek e

= oy —— Oy ot oy — Cg grert
(=4
Oy = — 1/2"—"’ii‘/3/4 — v

The left~hand sides of Egs. (1. 9) and (1. 10) represent the functions which are holomor-
phic inside and outside the unit circle, respectively. Expanding the integrand functions
into series, we can show that the integral terms in the right-hand sides are also holomor-
phic in the corresponding domains. From this it follows that

Dl :ZDZ :Dll == D-_)‘, = O
The values of F () obtained from (1,9) and (1. 10) should coincide. This is possible
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only in the case when oo %

S_”_dg_zo, S vdl _ g
[

;a.ﬁ‘l gﬁr&-l
]

Substituting the last expression of (1. 2) into the above equations and taking into account
(1.8), we arrive at a system of two equations for the constants C; and C, and solving

these equations, we obtain
d C:: 812020 — 829810 c, — Sudn—duby (1. 13)

B11dez — 832 ' 27 8udn—Oudn

S(2§/1+5f1) m--gfz

Bno =

Qe_/?g

[(0tn + 1) Fro + Fal gagﬂ v on=1,2

where the integration can be carried out along any path provided that it does not intez-
sect the segment QM ,nor the cut AMB.

2. Let us investigate the boundary conditions. Let the point £ lie on the lower edge
of the cut AMB. The integration path in (1.3) can be assumed arbitrary, provided that
it does not intersect the branch lines of the integrand functions. When the path passes
across the axis of symmetry, it must pass either below the point A/ and the branch line

X, or above them [7]. Let us write the expression for p," in the form
t

- 1¢ d d
p: SFS(F 28’)C fp 2 S CXC
¢ d
Direct computation shows that the last integral in the above expression is equal to zero,
and we can integrate the first integral along the lower edge of the cut AMB. Then

[Fi(6) — 22 (0] 3%, X =X"(51), |s|]=1 (2D

-1
pr =4 X

~le_ o

where the minus sign indicates the quantities referring to the lower edge of the cut,
Similarly, we have t s ds
p = SI*H @5z, P = ;;SF;(G) X*ds (2.2
t 7
When ¢ lies on the upper edge of the cut, we perform the integration in (1. 3) along the
same edge

p. = ntr§[F“- (6)—3g(c)] X ds (2.3)

t
Substituting the expressions (1. 8) into (2. 1) — (2. 3), we find that the terms dependent
on the constants C, and (, vanish. Solving the resulting equations for the boundary
values of the functions F, (t), we obtain [5]

o () — T2 F (1) = Yo (7) (2.4)
Y3 —{: . d
Yyt = 2etni2 LN S Py (B sin 8; 49,
471 VY 2(cos &, —cosTy)
1 d S P (B sin? 814, ]
STy @11 ) V2 (cos O — cos T7)

y2+ = — Deini/2 d'r [
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T=€eV=—e™ p=n—y h=0—-=03 0 y<n—y,

Here y and 1 are the angles counted from the positive direction of the z-axis;when
Im T<0 ,the values of y,* (1) are obtained from the condition that ¥n* (T) =
Yo (7).
The problem of determining F, ({) from the condition (2. 4) can easily be reduced
to the problem of conjugation for the functions

D () = [LF0 (©) + (— )" 5 o (1) | X5,
k==2n4+m—2;, n,m=1,2
which are holomorphic in the plane containing the cut AMB and have a pole of order
n -+ m — 2 at infinity, and the order of their singularities at the points A and B is
less than unity. The latter follows from the condition that the displacements of the slit
edges are restricted,
Solution of the problem yields the following expression:

2 R?
gt 3 Ynm 9T X 2" n-1| {1
Fao (©) = 755 | st g [ -2 8 X @)

k
m=1 Xo ;0 c)

g , 1

S ynl“‘;;i'“}‘(n“'l)C? Q;:)4
Yum = [(— 1) Yo" (1) — ¥ (0] (Xo )
Xy = e/ V 2(cos 71 + cos 7o)

where the coefficient C.z’ remains undefined, It can be fixed arbitrarily, since the factor
accompanying (,’ is the same as the factor accompanying C, in (1.8).

3. We shall now consider the dilatation of an elastic space with a spherical slit, caused
by the action of the axial p, and radial p, forces applied at infinity. Taking the uniform
stress field, we superimpose on it the stresses caused by the load

== Fp;C08 1(}1, prt == +py sin 13’1

applied at the slit surface, In this case we have

nrL T4 s 1y c—To T—%o
Fro = =2 |55 (1 =) In I T

r { fh . e .
e (‘;: - ‘*.!:“ e “‘ﬂ).‘

Acb ! =" -
< 2 1
19 = B0 = ‘”‘“*‘;S’i;’;;*;z”ﬁ (24550 + 81— 8 — 2E5 8)
= 85— 8
b1 = Bor =gz | @+ DS — 80 + (o + 48 — S +6 5257 |

81z = 835 = m[(“'i‘i)sa—dsz—(“*’r‘3)51+(°°+§2)So]
Spm =sinf(a +m)(mw—1,)], =02, n=1,2, m=0,1,2,3

Zy = COS Vg, Tp ==Sinyy, b = cos(y,/2)
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The values of the coefficients €, and C, for v=0,0.3 and 0.5 are givenin
Table 1 below.

Table 1
pr=1i pr==0 pi=0 Pr=1
v c s e Cs
va={

30° 0.04919 —0.008v1 0.05699 0.06980

60° 0.04215 —0.04309 0.03658 0.40354

90° 0.02988 —0.04088 0.01674 0.71904
120° 0.01430 0.02278 0.00393 0.52607
150° 0.00252 0.01886 0.00018 0.10598

Vo 0.3

30° 0.04406 —0.24810 0.03916 0.07006

60° 0.03870 —0.12188 0.02495 0.40640

90° 0.02796 —0.18848 0.01124 0.71065
120° 0.01365 —0.09991 0.00263 0.51364
450° 0.00248 —0.01051 0.00012 0.10469

N == 0.5

30° (1.04336 —0.03243 0.02956 0.07426

60° 0.03827 —0.48226 0.01859 0.42547

90° 0.02763 —0.29349 0.00819 0.72720
120° 0.01350 —0.18218 0.00188 0.54573
450° 0.00247 -—0.02989 0.00009 0.10454

We can use either (1. 9), or (1.10) to find F (£); o'({) and ¢'({) are determined from
(1. 2), and the stresses with the help of (1. 1), The integrals are computed using the quad-
ratures.

The stresses p, and p, along the arc ANB are determined in the finite form by the

formulas

2n 3z — 2z0—1 2p 157
Pzr-(.—q"b*’*cl)?z‘“—‘m*"#(“”ms Trs

~yrVEoa)

_ G -z — %, — 1) [V IG5 — 2] 4
TP = g -+ 60 (32 — 220 — ) [V 2 — 20) — 2a] +

+ %"__2_[;-2 arccosl }{% + b3 — 4z +2) ]/2(7. — Zg)— 4rg(z—-zo)]

which are different from those obtained in [1 - 4].
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Problems of existence of periodic solutions for various nonlinear equations of the
continuous media mechanics are investigated in a number of papers,e. g. in [1,
2]. The present paper proves the existence of an ®-periodic solution for non-
linear equations of anisotropic inhomogeneous shallow shells of variable thick-

ness, with damping taken into account.

1, Basic relationships, Let the median surface of the shell § be defined by
the equation r = r (a,, &) which maps S homeomorphically onto the domain
of variables @,, @, with the boundary I'. We consider the following variant of the non-
linear theory for an elastic anisotropic inhomogeneous shallow shell of variable thickness:

ey = en + kulty 4+ Yapa? = A7'te, + Ara, (4142 Wyt kyguy + Lppy?
2845 = 2e43 + 2k10uy + PP = 4,145 (U147 )e, +
Ay AT (g A3 Ny 4 k15U +-PyPs
2015 = — A147" (Y147 )e, — AT Az (V245")s,
*11 = — A1 — A2 (Ards) ™ Wy = AU, (22
Tij = Eijwiee, Mij = Dijian, Dijey = Y/sh*Eijury Eijiy = Expij = Eja

where the notation used is that of [3, 4].



