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An axisymmetric problem of deformation of a space weakened by a spherical 

cut with the external forces or displacements given at the edges of the cut, is 
solved in quadratures. The state of stress is expressed in terms of the analytic 
functions of a complex variable. The holomorphic character of these functions 

is studied and the nonholomorphic terms separated. Explicit formulas for the 
stresses on a surface complementing the cut to a complete sphere, are given for 
the case of uniform extension at infinity. The erroneous character of a number 
of solutions obtained earlier, is indicated. 

1, Let an elastic space be weakened by a slit which coincides with a part of a spher- 
ical surface of unit radius with its center at the coordinate origin _ In the meridional 

section the slit coincides with the arc _4&‘R (see Fig. 1) . 
The forces pz’, pr’ and pL-, pr are given 

at the upper and lower edge of the slit, respect- 
ively. The stresses and displacements vanish 
at infinity. The displacments of the slit edges 
are assumed bounded, and although the stresses 
at these points may be infinite, their singularities 

must be of order strictly less than unity. 
Similar assumptions were used in solving this 

problem in [l- 4) and others, but the holomor- 
phic character of the functions was wrongly as- 
sessed and the results obtained could therefore 
only be used for a restricted choice of loads. 

The stresses in a body under an axisymmetric 
load are given in terms of two analytic functions 

Fig. 1 rp and I$ of the complex variable 5 [5l,by 

(1. 1) 
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a, = 4 (1 ‘I- v) t rp’cq 
xi s --a -a0 X z 

z 

where z,r and% are cylindrical coordinates, v is the Poisson’s ratio and x=3---4~). 

Using the functions F ( j), P, (c), F, ( c) and u (5) defined by the relations 

cp’ ==2<F’ j F, u = 62F” i_ (1 + v)(2[F’ + F) (1.21 

9’ = F- 4W--2(1 + i’) F” - F,, u = ‘1, (CF,’ + F, + Fz) 

we can obtain [5] the following expressions for the axial and radial forces acting upon 

the unit spherical surface : , t 

(I. 3) 

The functions q (5) and II) (5) are holomorphic in the meridional cross section of the 
body (which in the present case corresponds to the plane cut along the arc AMB) , and 
vanish at infinity. This is easily established using the relations connecting the axisym- 
metric and plane states [6], or by writing the general solution of the ~~ymmetrlc prob- 
lem in terms of the generalized analytic functions, and passing from them to the analytic 
functions [7]. Treating the first equation of (1.2) as a differential equation in F ( 5)) 

we obtain 

or 

Since both above expressions should give the same result, we have 
m 

(1.6) 

Consequently, only one of the constants c and C’ can be fixed arbitrarily. From now 
on we shall assume that C’ = 0. 

Expanding ‘p’ (5) into series in positive (when 1 5 1 < 1) or negative (when 1 5 I > 
1) powers of 5 we can show that the integral terms in (1.4) and (1.5) represent the 
functions which are holomorphic when 1 f 1 < 1 and 1 5 f > ‘i , respectively. The 
function F (5) will be holomor~ic outside the unit circle and ZJ (5) --t 0 as 5 --t 
00 ; the difference F ( 5) - c / Jo’ 6 will be holomorphic within the unit circle. 

Note. In [l, 3, 41 F (5) was assumed to be holomorphic, i.e. it was in fact taken 
for granted that C = C’ = 0 which is possible only when the integral (1. 6) is equal zero. 



In [Z], slightly different functions, which are not in general holomorphic, were assumed 
to be so. 

The functions F, (C), F, (5) and u ( 5) are also holomorphic outside the unit circle, 
and 

lim 5” F, (5) = 0, n = 1, 2; lim QI (5) = 0, 5 --t 00 (1.7) 

The following differences are holomorphic within the unit circle: 

F, (5) - (n + 1) g (5), v (5) - 3/,CS-“t 

(g tc) =‘s/,c (~--“~ - 5-“‘t)) 

The function F,( 5) which is nonholomorphic within the unit circle, can be eliminated 

with help of the following functions: 

fl (0 = SC (-+ - 1)L(c)+~(5+1)-3a~ 

12(C) = *, L (5) = In 
c--2ia VT--t 

<+2ia Jft-1 

X0 = X (c, To), z0 = eiy*, a = sin + 

L (0) = -2ni, L (00) = 0 

where 27, is the angle subtended by the arc ANB complementing the cut to a com- 
plete circumference. Then we have 

F, = Fno + (n + 1) WI + (n - 1) Gfs, G = &C (1.8) 

The functions F,, (5) (n = 1, 2) are holomorphic in the plane with the cut AMB. 
In all these representations the branch line of r/z is drawn along the negative part of 

the z-axis (from the point 0 upwards). 
Solving the second equations of (1.2) for F (Q, we obtain 

--=- (1.9) 

The left-hand sides of Eqs, (1.9) and (1. 10) represent the functions which are holomor- 
phic inside and outside the unit circle, respectively. Expanding the integrand functions 
into series, we can show that the integral terms in the right-hand sides are also holomor- 
phic in the corresponding domains. From this it follows that 

The values of F ( c) obtained from (1.9) and (1. 10) should coincide. This is possible 
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only in the case when m OD 

s 
vdc 0 

OF= ’ 
s 

vd5 o 

OF= 
Substituting the last expresslo; of (1.2) into the above equations and taking into account 
(1,8), we arrive at a system of two equations for the constants C, and C,, and solving 
these equations, we obtain 

bn~eo - &xzbo 

Cl = i3&a-6&!%1 ’ a s&,2--b&21 

c _ wlo-all~o (1.11) 

6,, = i I@, + ffFl0 + Faol -_A.fL 7 an+1 
n=1,2 

0 5 
where the integration can be carried out along any path provided that it does not inter- 

sect the segment O&i , nor the cut AMB. 

2, Let us investigate the boundary conditions. Let the point t lie on the lower edge 
of the cut AMB. The integration path in (1.3) can be assumed arbitrary, provided that 
it does not intersect the branch lines of the integrand functions. When the path pas!zs 
across the axis of symmetry, it must pass either below the point M and the branch line 
X, or above them 17). Let us write the expression for pt- in the form 

Direct computation shows that the last integral in the above expression is equal to zero, 
and we can integrate the first integral along the lower edge of the cut AMB. Then 

PT -=- ti ( IF,-- (4 - % (41 +g 9 x- =x-(6, t), 161 = 1 (2.1) 
7 

where the minus sign indicates the quantities referring to the lower edge of the cut. 
Similarly, we have f t 

PI+ = +$‘z+@)$, pl.‘= -$--SF,+(a)X+ds (2.2) 
7 r 

When t lies on the upper edge of the cut, we perform the integration in (1.3) along the 
same edge t 

pz-= &i [Fs- (6) - 3g (a)] X- ds (2.3) 
r 

Substituting the expressions (1.8) into (2.1) - (2.3), we find that the terms dependent 
on the constants C, and C, vanish. Solving the resulting equations for the boundary 
values of the functions F, (r), we obtain [5] 

zF;o(fz) - 2s I”,) = y,* (z) (2.4) 



T = eiy = _e-iY8 
, y1 = n - y, 6, = n--6, o<y,<n--yy, 

Here y and 6 are the angles counted from the positive direction of the z-axis ; when 

Im z (0 , the values of g,,A (r) are obtained from the condition that &* (r) I- 

yF(i). 
The problem of determining F, (i) from the condition (2.4) can easily be reduced 

to the problem of conjugation for the functions 

which are holomorphic in the plane containing the cut AMB and have a pole of order 
tz + m - 2 at infinity, and the order of their singularities at the points A and B is 

less than unity. The latter follows from the condition that the displacements of the slit 

edges are restricted. 
Solution of the problem yields the following expression: 

5. 

s Ynl fg + (n - I) Cp’ J&j 
?I 

Ynm = I(-- I)“,+ w - Y, WI (xo->k 
x0- = ei-ft i 2 

v-wsM-co~To) 

where the coefficient Cz’ remains undefined. It can be fixed arbitrarily,since the factor 
accomp~ying C,’ is the same as the factor accompanying Cz in (1.8). 

3, We shall now consider the dilatation of an elastic space with a spherical slit, caused 
by the action of the axial p1 and radial p2 forces applied at infinity. Taking the uniform 

stress field, we superimpose on it the stresses caused by the load 

Pz” = FPICOS til, prf I= fpz sin 6, 

applied at the slit surface, In this case we have 

,‘j’,=sinf(z+m)(n-ro)J, a=~,. n=i,2; m=0,1,2,3 

=o = cos yo, I”~ = sin yO, b = cos (y() / 2) 



The values of the coefficients C, and C, for Y = 0,0.3 and 0.5 are given in 
Table 1 below. 

Table 1 

30” 
60” 
90” 

:ZY 0 

PI = i 

Cl 

0.04919 
0.04215 
0.02988 

::%%!z” 

0.04406 
0.03870 
0.02796 
0.01365 
0.00248 

0.04336 
0.03827 
0.02768 
6.01350 
0.00247 

P*=O I pt=o pt= 1 

I c1 Cl I G 

v==o 
-0.008rjl 0.05699 0.06980 
-0.04309 0.03658 0.40354 
-0.04088 0.01674 

11.02278 0.01886 0.00393 0.00018 :*;Z?+ 0: 10598 

v=o.3 
rDo*;;;;; :*::2:: 0.07006 

0.49640 
-0: 18818 0:01124 0.71065 
-0.09991 0.~263 0.51361 
-0.01051 0.00012 0.10469 

v-o.5 
-0.03243 0.02956 0.07426 

0.42517 ~%~~ 

--&8218 

:*OG:: 

~:~~ 

0.72720 

--0.02989 ZZ 

We can use either (1.9), or (1.10) to find F (5) ; cp'( 5) and $‘( 5) are determined from 

(1.2). and the stresses with the help of (1.1). The integrals are computed using the quad- 
ratnres. 

The stresses pr and P,. along the arc AN& are determined in the finite form by the 

which are different from those obtained in [l - 41. 
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1 

Problems of existence of periodic solutions for various nonlinear equations ofthe 
continuous media mechanics are investigated in a number of papers, e. g. in [l, 

21. The present paper proves the existence of an o-periodic solution for non- 
linear equations of anisotropic inhomogeneous shallow shells of variable thick- 
ness, with damping taken into account. 

1. Boric relatlonrhipr. Let the median surface of the shell S be defined by 
the equation r = r (ai, as) which maps S homeomorphically ontd the domain $2 

of variables a,, aa with the boundary r. We consider the following variant of thenon- 

linear theory for an elastic anisotropic inhomogeneous shallow shell of variable thickness: 

ali = eli + &ul + ‘/a*?= A;l~ia, + A1,,(A1A2)-1~Z+- lElluQ + r2q12 

2%2 = h2 + 2kl2% + 9192 = &4,'(ulA;'),* + 

A2A;'O~2A,1)a,+ 2&2~2+91$2 

2x 12 = - 4Ai1(qwG1)a, - A;lA,(~,,A,'),, 

x11 == - 4'~1a, - 4,&2(&42)-'7 $1 = A;'usal (1 t 2) 

Tij = EijkFklv Mii = DiiklXklr Dijkl = 1/&2Eijkl, Eijkl = Eklii = Ejikl 

where the notation used is that of [3, 41. 


